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Abstract

Estimation of carbon contents and stocks are important for carbon sequestration, greenhouse gas emissions and national
carbon balance inventories. For Denmark, we modeled the vertical distribution of soil organic carbon (SOC) and bulk
density, and mapped its spatial distribution at five standard soil depth intervals (025, 5215, 15230, 30260 and 602
100 cm) using 18 environmental variables as predictors. SOC distribution was influenced by precipitation, land use, soil type,
wetland, elevation, wetness index, and multi-resolution index of valley bottom flatness. The highest average SOC content of
20 g kg21 was reported for 025 cm soil, whereas there was on average 2.2 g SOC kg21 at 602100 cm depth. For SOC and
bulk density prediction precision decreased with soil depth, and a standard error of 2.8 g kg21 was found at 602100 cm soil
depth. Average SOC stock for 0230 cm was 72 t ha21 and in the top 1 m there was 120 t SOC ha21. In total, the soils stored
approximately 570 Tg C within the top 1 m. The soils under agriculture had the highest amount of carbon (444 Tg) followed
by forest and semi-natural vegetation that contributed 11% of the total SOC stock. More than 60% of the total SOC stock
was present in Podzols and Luvisols. Compared to previous estimates, our approach is more reliable as we adopted a robust
quantification technique and mapped the spatial distribution of SOC stock and prediction uncertainty. The estimation was
validated using common statistical indices and the data and high-resolution maps could be used for future soil carbon
assessment and inventories.
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Introduction

Digital Soil Mapping uses statistical tools to quantify the spatial

relationship between soil property values to its environmental

covariates [1]. The digital mapping of soil organic carbon (SOC)

at fine resolution is a challenging task [2] and the mapping is also a

high priority for SOC assessment and monitoring [3]. Spatial

models on SOC prediction has a long history (e.g., [4]). A range of

techniques have been used to predict and map SOC from

landscape to national or continental levels and Minasny et al. [5]

provided a comprehensive review. Several researchers applied

splines to model the vertical distribution of SOC in the soil profiles

and predicted SOC at a landscape scale using data-mining tools

and environmental variables as predictors [6–8]. Mishra et al. [9]

calculated SOC pool in each soil horizon and applied geographic

weighted regression to map SOC pool at a regional scale in mid-

west USA. Odgers et al. [10] used splines to derive SOC content

from soil map units and predicted SOC at six standard soil depths

for the entire USA. Arrouays et al. [11], Bou Kheir et al. [12],

Chaplot et al. [13], Doblas-Miranda et al. [14], mapped SOC at

national level using different statistical tools ranging from statistical

aggregation to advanced regression tools such as regression trees.

The distribution of SOC changes across the landscape and it

also varies by depth. In most soils, SOC is higher in the surface

horizons and it decreases with depth. Such depth-wise variability is

mostly continuous [15–17] except in soils with a strong human

impact like some soils in the Netherlands [18]. Although most

SOC studies and inventories are confined to 30 cm soil depth [19–

21], the amount of SOC stored below 30 cm is of relevant in many

ecosystems [22,23]. For accurate quantification of SOC stocks, a

depth function needs to be modeled. Several tools exist: spline

function [15,16], exponential decay function [24] or soil-type

specific or profile depth functions [18,25]. For modeling SOC with

depth, the equal-area spline function has been proven to be useful

in several studies [7,8,10]. Spline predicted SOC values with depth

act as a geo-referenced point data to which environmental

variables are joined and prediction models are generated using

digital soil mapping techniques.

In Denmark, studies on SOC dynamics and its quantification

has started after a national wide soil database was established
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between the years 1975–1985. Based on simple statistical scaling-

up techniques, Krogh et al. [26] calculated a total stock of about

579 Tg and reported that 69% of it was stored in the soils under

agriculture. Greve et al. [27] estimated topsoil SOC contents (g

100 g21) for the whole country but have not assessed the SOC

stocks. Bou Kheir et al. [12] predicted the spatial extent of organic

soils across Denmark. Similarly, Olesen [28] and Taghizadeh-

Toosi et al. [29] estimated the stock but did not map its

distribution. Most of these studies have estimated the SOC content

and stock but they have not explored the spatial distribution of

SOC stock nor quantified the uncertainty of the SOC predictions.

We applied digital soil mapping techniques to quantify the SOC

content and stocks for Denmark. The main objectives of this study

were: to model the vertical distribution of SOC content and bulk

density in soil profiles, to predict and map their spatial distribution

using environmental variables, to identify major environmental

variables responsible for SOC distribution, to estimate the SOC

stock for the soils of Denmark, and to assess the uncertainties in

the SOC predictions.

Materials and Methods

Study area
Denmark is situated in Northern Europe covering an area of

approximately 43,000 km2. The temperate climate is character-

ized by a mild winters with annual mean winter and summer

temperatures of about 0uC and 16uC [30]. Precipitation is well

distributed throughout the year with an average annual rainfall of

800 mm in the west to 500 mm to the east. The country is

relatively flat with a mean elevation above mean sea level is about

31 m. Denmark is divided into 10 physiographic regions2referred

in this paper as geo-regions2based on geographical, climatic and

soil-formation criteria.

The soils are coarse sandy to clayey to heavy clays as defined in

the Danish Soil Classification System [31]. Soil in the western part

Table 1. List of environmental variables used to predict the distribution of soil organic carbon and its stock in Denmark.

Environmental
variables

Scorpan
factor

Type of
variable Description

Range of
values

Scale or
resolution Reference

Soil map S Categorical Map of Soil types based on
soil texture (8 classes)

- 1:50,000 [31]

Precipitation C Continuous Average annual rainfall
(mm) (196121990)

525 to 905 30.4 m [31]

Geo-regions C Categorical Scanned geographical
regions map (10 classes)

- 1:100,000 [31]

Insolation C Continuous Potential incoming
solar radiation (2011)

254 to 698 30.4 m [61]

Mid-slope position C, N Continuous Covers the warmer
zones of slopes

0 to 1 30.4 m [62]

Land use O Categorical CORINE Land cover
data adopted in
Denmark (31 classes)

- 1:100,000 [45]

Elevation R Continuous Elevation of the land surface
derived from LiDAR (m)

0 to 170 30.4 m

Slope gradient R Continuous Maximum rate of change
between the cells
and neighbors (degree)

0 to 90 30.4 m [63]

Slope aspect R Continuous Direction of the steepest
slope from the North (degree)

0 to 360 30.4 m [63]

Flow accumulation R Continuous Number of
upslope cells

1 to 73645 30.4 m

SAGA wetness index R Continuous Wetness Index.
WI = ln (As / tan b): where As is
modified catchment area
and b is the slope gradient

7.2 to 19 30.4 m [64]

Multi-resolution
valley bottom flatness

R Continuous Possible depositional areas 0 to 11 30.4 m [65]

Valley depth R Continuous Extent of the valley depth (m) 0 to 90 30.4 m

Wetlands S, R Categorical Map showing the presence
or absence of wetlands

- 1:20,000 [31]

Landscape R Categorical Landform types (10 classes) - 1:100,000 [31]

Altitude above
channel network

R Continuous Vertical distance to
channel network base level (m)

0 to 56 30.4 m

Slope length factor R Continuous LS-factor of Universal
Soil Loss Equation (m)

0 to 47 30.4 m [66]

Geology P Categorical Scanned and registered
geological map (86 classes)

- 1:100,000 [31]

S-soil types; C-climate, O-organisms; R-relief; P-parent material; N-spatial position.
doi:10.1371/journal.pone.0105519.t001
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of the country are developed in non-glaciated sandy parent

material along the glacial flood-plains and Saalian moraine,

whereas the soils from the central and eastern region have been

developed on relatively young basal till high in finer materials [31].

Most of the soils in the north have been formed in sand mixed with

uplifted marine sediments. More than 66% of the soils are

classified as Podzols (Spodosols) and Luvisols (Alfisols). Podzols

occupy a major portion in the west and Luvisols and Cambisols

(Inceptisols, Entisols) in the central and eastern part of the country

[32]. Peat soils (Histosols) occur in poorly drained basins

throughout the country. About 66% of the total land area is used

for agriculture with grain and potato as the main crops. Forest

areas include spruce, pine and beach and these cover more than

12%.

Point data
Point (pedon) data on soil organic carbon (SOC) (g kg21) and

bulk density (Db) (Mg m23) were derived from two databases:

Danish Soil Classification database (DSC) and Danish Soil Profile

database (DSP). DSC consists of about 36,000 point observations

from the topsoil (0220 cm) sampled randomly from agricultural

fields in the period 197521980. From about 6,000 same pedons,

soils from the subsoil (35255 cm) was also sampled. SOC content

was determined by dry combustion using a LECO IR-12 furnace.

DSP consists of a grid based data (767 km spacing) established

during the 1990s for improve fertilizer recommendation in

Denmark [33]. At each 850 grid intersection, soil samples were

collected based on genetic horizons and were analyzed for SOC by

dry combustion. For some selected horizons, samples were taken

to determine Db. In addition, soil data from about 1100 profiles

were used, and these were collected during the establishment of

main gas pipeline system and other research activities across

Denmark [34].

In total 40,250 topsoil point samples and 1,994 soil profiles with

horizon based SOC data were used in this study. About 1,133 soil

profiles included Db measurements.

Environmental covariates
The environmental covariates data used in this study are terrain

parameters from the Digital Elevation Model (DEM) of Denmark

derived using Light Detection and Ranging (LiDAR) technology.

The LiDAR points were interpolated using Delaunay Triangula-

tion and the output Triangular Irregular Network (TIN) surface

was converted to a grid DEM with a 1.661.6 m spacing. This

study resampled the original 1.6 m DEM to 30.4 m using simple

aggregation considering the mean value. This 30.4 m grid size was

also used in the previous studies in Denmark (e.g., [32,35]). Before

aggregating to a coarser grid, the DEM was corrected by removing

the pits and peaks of about 50 cm dimensions in order to ensure a

regular flow on the surface. Once the DEM was processed, a

number of terrain parameters (e.g., slope aspect, slope gradient,

elevation, SAGA wetness index, multi-resolution index of valley

bottom flatness (MrVBF), altitude above channel network, slope-

length factor, over-land flow distance, and valley depth) were

derived. Tools and algorithms incorporated in SAGA GIS [36]

and Arc GIS V10.2 [37] were used to process the DEM and to

derive these parameters.

Other covariates used were six choropleth maps which were

compiled at different cartographic scales including: soil map,

landscape types, geo-regions, geology, land use, and wetlands – see

Table 1 and for more detail Adhikari et al. [35].

Key environmental variables affecting the spatial distribution of

SOC and Db in Denmark were identified. The relative usage of the

environmental variables used during SOC and Db prediction was

calculated for each depth and their importance was expressed in

percentage. This was done with Cubist software which determines

the relative importance of variables based on their usage in the

prediction rules. The prediction method adopted in this study is

summarized in Figure 1.

Figure 1. Schematic representation of overall prediction
scenario.
doi:10.1371/journal.pone.0105519.g001

Table 2. Average soil bulk density (Mg m23) for different soil organic carbon levels (g 100 g21) within the central wetlands
[Source: [44]].

SOC content Soil depth (cm)

0230 30260 60290

,6 1.15 0.56 0.76

6212 0.77 0.61 0.44

.12 0.39 0.25 0.19

doi:10.1371/journal.pone.0105519.t002
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Modeling SOC and Db distribution
The vertical distribution of SOC and Db in the soil profiles was

modeled with mass preserving equal-area quadratic splines [15] in

R [38]. The mathematical derivation of the spline has been

described by Malone et al. [8]. As the fitting quality of splines to

profile attribute data depends on a smoothing parameter2lambda

(l), we tested seven l values (0.00001, 0.0001, 0.001, 0.01, 0.1, 1,

10) for SOC and Db data from all the profiles and selected a l
value that showed the best fit for all the profiles using the root

mean square. With increasing l value, the fit becomes more

rough. During the fit, we pegged the spline by introducing a 1 cm

thick slice with a same SOC value at the topmost layer to prevent

unnecessary extrapolation on the surface horizon.

Once the depth function of SOC and Db were modeled, a

weighted-average value of these properties were derived for five

soil depths (025, 5215, 15230, 30260, and 602100 cm) based

on the GlobalSoilMap specifications [39]. To these new values for

the standard depths from all soil profiles, environmental variables

were intersected and used for statistical analysis and spatial

prediction.

Mapping to the spatial domain
Spatial prediction of SOC content and Db at five depths was

based on Regression kriging (RK) [40]. RK assumed that the

spatial prediction function consists of a deterministic model

formed by a regression, and the residuals of the regression

(unexplained variation) are spatially correlated. The general

principle of RK includes (1) regression, and (2) simple kriging of

the residuals from the regression, where outputs from these two

steps are added to obtain the final prediction. For the regression

step, we adopted Regression-rules (RR) derived using Cubist
software [41]. This tool generates a set of condition2based rules

where each rule comes with a multiple regression prediction

function that only operates once the conditions specified by the

rule are met [42].

To build the SOC and Db prediction model in Cubist, the data

set was split randomly into two sets: 75% for calibration and 25%

for model validation. Before the data split, SOC content from the

topsoil observations (0220 cm) were joined to the spline predicted

SOC content from 025 and 5215 cm soil depths. Similarly, SOC

content from subsoil observations (35255 cm) were attached to

the spline predicted SOC at 30260 cm soil depth. This way, a

larger number of point SOC observations were incorporated to

the splined SOC data from the 767 km grid profiles. The Cubist
tool was run for log transformed SOC [log SOC g kg21] and Db

data from each depth interval and the output was converted to a

regular grid map using a program written in FORTRAN. For

each calibration location, the difference between measured and

RR predicted value was calculated and its spatial distribution over

the study area was generated using local variogram and point

kriging in VESPER program [43]. This continuous residual

surface was added to the corresponding RR output to get a final

prediction of SOC and Db for all five depths. Together with the

prediction, a map showing the uncertainty of the prediction was

generated. Both SOC prediction and uncertainty maps at each

depth were then back-transformed to SOC in g kg21.

Bulk density in the peat areas
Peat lands are mostly present along the central part of the

wetlands across Denmark. Bulk density in those areas were

adjusted according to Greve et al. [44]. For the three surface layers

(i.e., 025, 5215, and 15230 cm soil depths), Db from 0230 cm

was used, and for the 30260 and 602100 cm, Db from 302

60 cm, and 60290 cm were used (Table 2).
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SOC stocks
SOC stock for each soil depth was calculated according to Eq.

(1) using SOC content and Db data. SOC stocks from the five

layers were summed to obtain a SOC stock to 1 m soil depth. Db

in Eq. (1) was corrected for gravel content.

SOCstock~ SOCcontent|Db|D½ �=10 ð1Þ

Where SOCstock is the SOC stock (t ha21), SOCcontent the SOC

content (g kg21), Db the soil bulk density (Mg m23) and D the

given soil layer thickness (cm).

Model validation
Model performance in predicting SOC content and Db was

evaluated on 25% of the point data. The following three indices

that were calculated:

R2~

Pn
i~1

predi{ obs
� �2

Pn
i~1

obsi{ obs
� �2

ð2Þ

ME~
1

n

Xn

i~1

(obsi{predi) ð3Þ

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i~1

(obsi{predi)
2

s
ð4Þ

Where obs and pred are observed and predicted SOC and Db

values from n number of observations at ith locations, ME is mean

error, and RMSE is the root mean square error.

Predicted SOC stock was determined for all five depth intervals

and then aggregated to 0230 cm and 02100 cm soil depth.

These two C stock maps were stratified based on soil and land use

types. The soil class map of Denmark based on the FAO legend

[32] and a land use map (CORINE data) were used. The

CORINE database for Denmark has 31 classes [45] but in this

study the legend was reduced to five major land uses types:

artificial surface (urban areas, industrial areas, road network and

ports etc.), agricultural areas, forest and semi-natural areas,

wetlands, and others (e.g., coastal lagoon, estuaries etc.) for ease

of comparison to other studies (e.g., [11,22,26]). We also stratified

our stock maps based on Danish geo-regions. We first derived the

area of each soil, land use and geo-regions class based on the

number of predicted pixels within those classes and then calculated

an average and total SOC stock for each class at 0230 and 02

100 cm soil depth. The 0230 cm depth represents the plough

depth from agriculture areas and estimation of carbon for this

depth is of interest to farm management. The top 1 m soil depth

mostly represents a rooting depth of many field crops and may act

as an important soil depth section for carbon balance and

accounting studies.

Results

Summary of SOC and bulk density
SOC content was highly variable and ranged from 0 to 562 g

kg21 for the topsoil (0220 cm) and from 0 to 569 g kg21 in the

subsoil (Table 3). Mean SOC decreased with soil depth and SOC

at 602100 cm was about four times lower than the SOC in the

025 cm layer. With depth, the coefficient of variation (CV) of the

SOC content increased. The CV at 025 cm was 184% and that

for the 602100 cm was about 466%. The SOC data was

positively skewed at all soil depths with a maximum skewness

coefficient at 602100 cm. The equal-area splines modeled the

depth-wise distribution and generated a continuous SOC profile to

1 m depth. The best l value to fit all soil profiles for both SOC

and Db data was 0.1. Also average Db was found to be increased

with soil depth. Up to 30 cm depth the Db was on average

1.44 Mg m23, whereas it increased to 1.52 Mg m23 below 60 cm

depth. Bulk density appeared to be less variable with depth

(Table 3).

Figure 2 shows a measured and spline predicted SOC and Db

for a coarse sandy soil under agriculture area from the Saalian

moraine soilscape in western Denmark (West Jutland). Measured

SOC from different horizons decreased with depth except at 532

73 cm where it increased due to podsolization. Although a spline

should pass through the mid-point of each measured horizon for

this soil profile, in this case the spline slightly extrapolated the

SOC value at 35255 cm due to the selected l at 0.1.

Prediction rules for SOC and Db

Depending on the soil depth, 17 to 54 condition-based

regression rules were generated while predicting SOC and Db.

Figure 2. Example of a fitted spline for soil organic carbon content (a), and for bulk density (b). Horizontal bars represent measured soil
organic carbon and bulk density at different soil horizons, continuous line through horizons represents a fitted spline, and horizontal olive-green bars
give an weighted-average values of these properties at five standard soil depth intervals (i.e., 025, 5215, 15230, 30260 and 602100 cm).
doi:10.1371/journal.pone.0105519.g002
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This paper only included one of the 54 rules produced during

SOC prediction at 025 cm soil depth, as an example.

Rule 3: [400 cases, mean 3.1, range 2.2 to 4.5, est err 0.21]

if

Georegions in (1, 2, 3, 6)

Landscape in (5, 6, 7)

MrVBF.6.6

Soil map in (3, 4, 6, 7)

then

log SOC g kg21 = 1.527+0.124*MrVBF+0.0067*Eleva-

tion+0.084*SAGA wetness index–0.0011*precipitation+0.06*slope

gradient.

This rule used elevation, SAGA wetness index, MrVBF,

precipitation and slope gradient to predict SOC in the areas

where the MrVBF index is higher than 6.6 and consisted of fine

sandy soils from a Moraine landscapes from the geo-regions (e.g.

Himmerland). This rule was only valid for 400 locations where the

mean SOC was 3.1 [log SOC g kg21] and the prediction error was

about 0.2 [log SOC g kg21].

Identifying predictors
Variables were identified for SOC and Db prediction based on

their relative usages in the model (Table 4). In all models,

precipitation appeared to be the most dominant variable followed

by altitude above channel network and SAGA wetness index to

predict SOC. As an example, to predict SOC at 5215 cm,

precipitation had a usage of 98% for both rule setting and

developing a linear prediction model followed by SAGA wetness

index which had a relative usage of 67% and 94%. For this model,

insolation and slope aspect had the lowest contribution. Geology

became robust with increasing soil depth, whereas land use was

important for SOC prediction of the surface layers. Geology, soil

map, wetlands, land use, precipitation, MrVBF, SAGA wetness

index, elevation, slope gradient, slope-length factor, and altitude

above channel network were among the predictors that had a

relative importance of .60%. Similarly, land use, soil map,

geology, slope gradient, SAGA wetness index, MrVBF, and

elevation appeared to be the most important variables for

predicting Db at all soil depths.

Predicted maps
Predicted maps of SOC content (Figure 3) and Db (map not

shown) at five soil depths were produced at a resolution of

30.4630.4 m. The highest mean SOC content was in the 025 cm

layer (mean 20 g kg21; sd 11 g kg21). Predicted SOC content

decreased with soil depth and at 602100 cm, it was on average

2.2 g kg21. The soils of western Denmark have relatively higher

SOC content than the rest of the country. The northern part has a

moderate amount of SOC with two large raised bogs with high

SOC contents. Along the coastline, especially in the west, soils with

lower SOC concentration were mapped.

The prediction errors were higher towards the west and along

the coastline. The prediction error increased with soil depth. For

the 025 cm layer, the mean error was 1.1 g kg21 and it increased

to 1.8 g kg21 at 602100 cm soil depth.

Predicted SOC content for the FAO2UNESCO soil groups is

shown in Table 5. Average SOC content ranged between 11.8 to

52.6 g kg21 at 0230 cm and between 1.9 to 37.5 g kg21 at 302

100 cm. The highest SOC was observed in Histosols and the

lowest in Arenosols at most soil depths.
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Model validation
SOC prediction models performance is summarized in Table 6.

The best prediction was found at 5215 cm soil depth for both

training and test data sets. The model performance at 602100 cm

was relatively poor compared to the rest of the soil depths.

Negative ME values suggested that almost all the prediction

models were negatively biased suggesting some under prediction of

the mapping of SOC distribution.

SOC stocks
SOC stock maps were made for two soil depths (Figure 4). For

0230 cm, average SOC stocks were about 72 t ha21 and for the

top 1 m depth, it was about 120 t SOC ha21. Most of the western

and northern parts of the country have more than 80 t SOC ha21

in the top 30 cm whereas the average stock in the eastern part of

the country was less than 80 t SOC ha21. Total SOC stock was

calculated for each geo-region (Figure 5) and Himmerland and

West Jutland had an average stock of about 135 t SOC ha21

followed by North Jutland and Thy both having a mean stock of .

120 t SOC ha21. The soils of West Jutland and East Denmark

contain almost 50% of the total SOC stock in Denmark.

Luvisols and Podzols contain about 60% of the total SOC stock

(Table 7). Other soil groups that contain significant amounts of

SOC were Cambisols (6%), Gleysols (9%), and Arenosols (9%).

Although Histosols had SOC stock of 176 t ha21, its total content

was 20 Tg SOC. For all soil groups, more than 58% of the total

stock was in the top 30 cm. Unmapped areas in the soil map

representing major Danish cities that may also contain a

substantial amount of carbon [46].

Of the total stock of 570 Tg SOC about 59% is in the upper

30 cm. Soils under agriculture have an average stock of 121 t ha21

and contain about 444 Tg which is almost 78% of the total

estimated stock (Table 8). Another large fraction of SOC stock is

found in the soils of the forest and semi-natural areas, and these

had a stock of 39 Tg in the top 30 cm and about 67 Tg up to 1 m

soil depth. Wetland areas contain large amounts of SOC, and

average SOC stock within 1 m soil depth was about 152 t ha21

which is nearly 2% of the total stock. Almost 90% of the total SOC

stock within the top 1 m soil depth is found in the soils under

agriculture, forest and natural areas.

Discussion

Here we have predicted the distribution of SOC contents and

stocks across Denmark including an assessment of the prediction

error. We have also estimated the SOC contents and stocks for

different land uses and soil types. This discussion focuses on the

Figure 3. Predicted soil organic carbon content (a), and standard error maps (b) at five soil depths in Denmark.
doi:10.1371/journal.pone.0105519.g003

Table 6. Model performance to predict soil organic carbon content [log SOC g kg21] based on Training and Validation datasets.

Soil depth (cm) Training data Validation data

R2 RMSE ME R2 RMSE ME

025 0.61 0.22 20.008 0.41 0.24 20.08

5215 0.63 0.22 20.006 0.42 0.24 20.02

15230 0.51 0.62 20.03 0.43 0.66 20.22

30260 0.50 0.53 20.05 0.29 0.56 0.02

602100 0.28 0.47 20.06 0.23 0.48 0.12

doi:10.1371/journal.pone.0105519.t006
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prediction model, the importance of the variables, the uncertainty,

and the SOC contents and stocks.

Prediction model
The equal-area spline fit the discrete horizon data but it also

harmonized the profile by disaggregating the horizon bulk data

and generated a continuous function of SOC distribution. Several

other researchers have advocated the usefulness of such splines in

depth-wise mapping of SOC in different parts of the world applied

from local to regional extents (e.g., [7,8,10]). Pegging of spline by

introducing an artificial horizon on the surface benefitted our

splines that restricted biased extrapolation of SOC on the surface

horizon.

The spatial prediction method (i.e. rule-based regression using

the Cubist software) was capable of exploring the relationship of

SOC to its environment predictors. The prediction rules were

conditioned to a given environmental settings such that each rule

is valid only to that specific boundary within which SOC

distribution presumably less heterogeneous compared to the areas

outside where other conditions and rules prevail. For example,

SOC content in forests or clayey soils might be different than the

SOC from agriculture or sandy soils hence different prediction

models operated in these two specific areas. Such a beneficial and

advanced function has been used by Lacoste et al. [7] who found

regression-rules combined with the spline depth function useful for

producing a detailed pseudo-3D map of SOC content in

heterogeneous agricultural landscape in France. Minasny and

McBratney [42] found that regression rules provided a greater

accuracy compared to partial least squares while predicting total

carbon content. Several other studies have applied this tool in

digital soil mapping (e.g., [35,47,48]).

Variable importance. The environmental variables used to

predict SOC content showed a varying level of importance in the

model. There was a large influence of precipitation, land use, soil

type and some terrain parameters such as elevation, slope

gradient, SAGA wetness index, and MrVBF on the spatial

distribution of SOC content. The influence of topographic

parameters on SOC distribution has been documented in other

studies [6,8,9,49–51]. Similarly, land use, precipitation, soil types,

wetlands were found important while mapping SOC distribution

[11,14,18,52–55]. The influence of terrain parameters on SOC

composition and distribution can be linked to its behavior on soil

re-distribution through erosion and deposition, in the maintenance

of vegetation cover and rooting depths, and in soil drainage that

affects SOC decomposition as well as vegetation. In Denmark, the

influence of elevation, soil types, geology, and slope gradient was

also documented by Bou Kheir et al. [12] when predicting SOC in

wet cultivated lands.

The categorical variables such as soil types, geo-regions, and

land use were used in defining the rule conditions and continuous

variables (terrain parameters) in regression functions. Some terrain

parameters like elevation, SAGA wetness index, MrVBF, altitude

above channel network etc. were utilized in setting rule conditions.

This combined approach in defining the conditions partitioned the

study area into several possible strata where SOC distribution was

supposed to be more homogeneous and in each stratum several

terrain parameters were again used to make sure that the within-

stratum SOC variability was well captured by the model. This has

made the model robust in predicting SOC content.

Uncertainty. Based on validation indices, the prediction

models showed a higher performance (i.e., higher R2 and a lower

RMSE) in calibration data (75%) than in validation data (25%).

The uncertainty of the SOC prediction increased with depth. The

R2 value ranged between 0.23–0.63 - the higher values for the

surface layers. It suggests that our prediction was able to capture

up to 63% of total SOC variability. The range of R2 values was

comparable to similar SOC mapping studies where internal

validation was applied [24,50,56,57]. Values higher than 0.7 are

unusual and values ,0.5 are quite common in soil attribute

Figure 4. Predicted soil organic carbon stock maps at 0230 cm (a), and 02100 cm (b) soil depths for Denmark.
doi:10.1371/journal.pone.0105519.g004
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predictions [58]. The difference in R2 value between the two

datasets could probably be attributed to the different data density

used in prediction. Minasny et al. [5] reviewed several previous

SOC mapping studies, and reported that with increasing data

density the R2 of prediction was larger. Similarly, SOC maps from

the upper soil depths were associated with a low prediction error

compared to the maps with depth. This could be linked to the

terrain parameters used as predictors because most of these

parameters explain soil surface phenomena and the uncertainty

increases with depth [24]. Moreover, higher data density from the

surface layers (e.g., 025 and 525 cm) might have a positive

influence on prediction performance.

SOC content and stock. SOC data from two main sources

were used in this study: high-density (about 1 observation per km2)

topsoil and subsoil samples, and from soil profiles at each 7-km

grid-intersections together with the data from profiles along the

pipe lines across Denmark. The grid and point data covered the

entire country.

The SOC data were all from dry combustion analysis and from

the period 1975285 so we have modeled and predicted here the

SOC contents and stocks for that period. Assuming a steady-state

condition at that period, i.e. the carbon levels represent the

equilibrium with its physical environment and landuse. Likely,

SOC contents have changed since that time, thus the map can be

used as a baseline to indicate spatio-temporal changes.

A higher SOC content was found in surface soils, and the lowest

average SOC content of 3 g kg21 was found at 602100 cm soil

depth. The western part of the country mostly consists of glacial

floodplains and old Saalian moraine landscapes where soils are

predominantly sandy. To increase the soil fertility in those areas,

farmers has been adding for decades large amounts of manure in

the form of pig slurry. This may have led to increased SOC

content and gave the highest SOC stock in those areas compared

to other geo-regions in Denmark as also reported in Taghizadeh-

Toosi et al. [29].

Our results are in line with the previous SOC estimations in

Denmark. According to Krogh et al. [26], total stock in Denmark

to 1 m soil depth ranged between 5632598 Tg with 579 Tg as the

average which was comparable to our prediction of 570 Tg.

Similarly, SOC stock from the topsoil (0228 cm) was about 230

Tg while our prediction showed about 266 Tg. Small differences

Figure 5. Soil organic carbon stock (1 m depth) for the geo-
regions in Denmark. Percentage values represent the fraction of the
total soil organic carbon content stock (570 Tg).
doi:10.1371/journal.pone.0105519.g005

Table 7. Soil organic carbon stock in the top 1 m soil depth according to FAO2UNESCO soil groups.

FAO Soil groups Area (km2) Average SOC stock (t ha21) Total stock Relative stock

(Tg) (%)

0230 cm 02100 cm 0230 cm 02100 cm 0230 cm:02100 cm

Alisols 921.9 71.3 118.3 7.3 (2%) 12.1 (2%) 60

Arenosols 3,585.9 60.3 105.0 29.5 (9%) 51.3 (9%) 57

Cambisols 2,910.2 64.0 109.9 20.8 (6%) 35.4 (6%) 58

Luvisols 14,499.4 62.3 107.6 100.1 (29%) 172.9 (30%) 58

Podzols 13,745.0 79.6 129.8 115.4 (34%) 189.0 (33%) 61

Fluvisols 879.6 80.2 144.5 7.7 (2%) 13.7 (2%) 56

Gleysols 3,310.0 85.3 140.5 30.3 (9%) 49.7 (9%) 61

Podzoluvisols 698.3 75.7 126.0 5.8 (2%) 9.7 (2%) 60

Histosols 1,039.6 120.8 176.1 14.0 (4%) 21.1 (4%) 69

Unmapped areas 1,320.45 63.1 109.8 9.0 (3%) 15.7 (3%) 57

Sum 42,910.6 340 (100%) 570 (100%)

doi:10.1371/journal.pone.0105519.t007
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in stocks estimates between the two studies were noticed. For

example, SOC stock in agricultural areas as predicted by Krogh et

al. [26] was 404 Tg, whereas the estimate in the current study is

444 Tg. This could be due to a difference in areas estimated for

agricultural lands in two studies. Our prediction used CORINE

data that suggested an agricultural area of nearly 32,942 km2,

whereas this area was 28,883 km2 in the previous study based on

AIS (Area Information System). In a separate study, Olesen [28]

reported a total stock of 604 Tg from 0260 cm soil depth

calculated for an area of 34,000 km2 based on AIS. Unlike in our

study where bulk density from the peat lands were adjusted,

Olesen applied a standard bulk density of 1 Mg m23 for all peats

or organic soils and that might have increased the stock leading to

over estimation.

Previous estimates of SOC stocks had not quantified the spatial

distribution of SOC stock nor validated their prediction. Our

approach seemed to be more reliable and the data generated could

be useful for future SOC content and stock assessments.

A large amount of SOC was present in the soils under

agriculture. Our estimation of 121 t ha21 is in a comparable to the

SOC stock of 111 t ha21 estimated for arable lands in Scotland

[59] but it was slightly higher than the arable stock in Southeast

Germany [60]. Similarly, our predicted average SOC stock of 121

t ha21 from the agricultural areas was lower than the findings of

Taghizadeh-Toosi et al. [29]. The later study used a soil-type

dependent standard Db established for 767 km grid and perhaps

overestimated the SOC stock.

The estimation of average SOC stock in different soil groups

within 0230 cm depth was comparable to Arrouays et al. [11],

but the total stock was approximately nine times less than reported

for France (which is almost 13 times larger than Denmark).

Contrary to our study, the soils under forest soils contained more

SOC than the arable soils in France. Similar results were also

reported by Chaplot et al. [13] from Laos. A slightly lower average

stock in the soils under forest in our study might appear due to the

inclusion of non-forested areas (semi-natural areas) in the same

class and exclusion of litter layer that possibly lowered its value.

Decade long intensive soil management practices such as addition

of large amount of manure to the agricultural soils might have

increased SOC contents and consequently the SOC stock from

those areas [29]. Likewise, our estimated average stock for 1 m soil

depth from different soil groups, for example, Cambisols (110 t

ha21), and Gleysols (140 t ha21) were in a agreement with the

global estimate of Batjes [22] using the same soil depth. We also

observed .50% stock stored within the top 30 cm soil depth for

almost all soil groups which also corresponds to the finding of

Batjes [22].

Although the SOC stock in Denmark might have changed

substantially over the past few decades [29], our estimation based

on the available data has provided a baseline SOC. Together with

the estimation of uncertainty, the maps are more reliable and

could be useful in environmental research in Denmark. It could

support national carbon accounting and carbon balance studies

and also act as a back ground information for monitoring temporal

SOC changes in Denmark.

Conclusions

This study predicted the spatial distribution of SOC content (g

kg21) at five soil depths intervals (025, 5215, 15230, 30260, and

602100 cm) and quantified its stock (t ha21) to 1 m soil depth for

Denmark. DEM derivatives and soil maps were used as predictors

where condition-based regression rules were applied to quantify

the spatial relationship between measured SOC and Db with the

predictors. The following can be concluded from this study:

N Equal area spline modeled the continuous depth function of

SOC and Db data from discrete soil horizons in soil profiles

from Denmark.

N The most important variables that influenced SOC distribu-

tion across Denmark were precipitation, wetlands, land use,

soil types, elevation, and saga wetness index.

N Model performance was better for surface soil layers and

almost all prediction models suffered from underpredictions.

N The total estimated SOC stock at 0230 cm soil depth was

about 340 Tg and that for 02100 cm was 570 Tg.

N Almost 60% of the total SOC stock was found in Luvisols and

Podzols.

N About 90% of SOC was held in soils under agriculture, forest

and semi-natural vegetation. For the soils under agriculture,

60% of the SOC was found in the top 30 cm.

N West Jutland and east Denmark contained almost 50% of the

total SOC stock.

N This article is an example for a national level SOC mapping

based on GlobalSoilMap procedures and the methods applied

can be tested and used in other part of the world.
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